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Model predictions not being limited to a fixed set of categories (COCO: 80 classes),
and instead being part of a large open dictionary (WordNet: 100,000 synsets).



Example : If the model has never seen tricycle, it still should give a plausible
prediction as vehic'le.

They take each class in ADE20K dataset and relate it with a synset(synonym set) from
WordNet, end up with 2019 unique synsets forming a DAG with entity being the
common root.



Entity

Finger

Extremity
External body part Neck Hand
Body part Buttocks Face
Strip Torso
D Segment Pond Mere
Lake River Water hole Lo
: h Wood 9
Thing Body of water Stream Rivulet Bamboo
Waterway Ditch Cark
Plantmaterial  Cardboard Paperboard
Writing paper
Materis Paper Pad Notepad
Chemical Compound Incense
Sutglr<e Softener Cracker
) ) N Powder Meat Bread Loaf of bread
Physical entity Matter Salid Food Baked goads Pastry Pie Tart Quiche
Plastic Produce Vegetable
Sutgprce Food Fogdstutf Ingredient Fiaverer Hers
Nutriment Eag Salt
Valley
MNatural depression  Sinkhale Edible fruit
Mountain
‘ Trunk
Natural elevation Hill Knoll Cane
Geological-formation Hillside Stalk Branchlet
Slope ki Boulder Branch Gourd
i slope
Pebble Leaf Fruit Ear
Escarprment %
o Plant orgafleproductive structure Sweet pea
Object Rock b Hai E P
Plant part Stump air yebrow Grape
Natural object Body covering Feather Vine squash
Covering
Whaole u < Shell Mouse Herb Shrub
ving thing Y Person Vascular plant — yyoaq
ly plant Tree
Ordgjem Plant Ornamental Bird
Animal Chordate Vertebrate Mammal
Shutter Jalousie
Blind Curtain Shower curtain
Shield Canopy Umbrella
Protective covering Shelter Kennel AWEING
Birdhouse
Blanket
Skirt Bedspread
ol Clothicovering  Bedclothes Quilt Eiderdown
wvering . Apparel Hat Bonnet
Clothing—ieaddress Helmet Kepi
Cap Claak
Overgarment Coat
Gapat Shirt Jersey
Sweater Tank top
Aquarium
Tank Cistern
Crock
Artifact Jar A"‘}g:r"
Vessel
Bottle Flask
Carafe
Cruet

Pineapple
Banana
Avocado

Pumpkin
Rose
Palm
Lace

Gallinaceous bird  Livestock
Deer

Placental Cow

Ruminant
Ungulate Even-toed unguiate o Bovid

Wrap
Cape
Poncho
Jacket

Fishbowl

Shoelace
Elk
Sheep
Goat

Part of the concept map created (The leaves are the specific objects and inner
nodes are general concepts). The root isentituy, since everything is an entity.




1. Supervised: Testing on the 150 training classes, pixel embedding is compared
with all 150 concept embeddings and highest rank

2. Zero-shot: Tested on unseen validation classes, taken classes above a threshold
to be predictions. (this threshold is determined before testing from 100
validation images)
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Figure 3. The open vocabulary parsing network. The concept stream encodes word concept hierarchy based on dictionaries like WordNet.
The image stream parses images based on the learned hierarchy.



A max-margin loss is used to learn the embedding function f(-) for mapping the
concept space to joint embedding space.

They argue that since label retrieval is a ranking problem, negative labels should be
introduced to push scores of positive labels to be larger than those of negative.

Initially, they use a max-maxrgin loss for learning the mapping g(-) from pixel
feature space to the joint embedding space, but find that using softmax in the fForm
of a triplet loss performs better.
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Their ‘lmage Stream’ uses an adapted version of VGG-16 (to make the embeddings
have a dimension equal to the word concept embeddings).

Also, (in the latent space), they fix the norms of the image embedding pixels to 30 to

improve numerical stability (since pixel embeddings are the most specific concept in
the joint embedding space).

The ‘Concept Stream’ is trained first and the trained word embeddings are used as
initializations For training loop.



They use standard metrics (per-pixel accuracy, mean accuracy, mlOU, weighted IOU),
alongwith

1. open vocab metrics like hierarchical precision, recall and F-score which depends
on the depth of the word concept in the whole concept map.
2. Information content ratio: defined as —log(probability), (probability is taken

as the frequency of that concept and its hyponyms in the whole dataset)



Supervised: They were not able to beat the baseline score of multi class classification
using the same CNN (Softmax).

Interestingly, another baseline (Conditional Softmax) which was specifically
designed for hierarchical classification was also less than Softmax.

Only standard metrics (accuracy, mean accuracy, mlOU, wlOU) were used to compare
models.



Zero-shot: Here, however, they were able to consistently perform better than the
baselines.

They also find that using the asymmetric scoring function gives a significant
improvement.

Only hierarchical metrics and information content ratio were used for comparisons
here.



Qualitatively, they show that in places where the model is unsure of the specific
object, it correctly predicts a more general concept.

For example, in a rocking chair, the top part looks like a chair so it classifies that
correctly, but the bottom part is not like a normal chair, and since it hasn’t seen that
particularly, it classifies it as’ furniture’, which is plausible and human-Llike.



They also do a ‘concept search’ in the embedding space to show that though baseline
models can learn specific objects equally well, when more abstract terms are
‘searched’ for in the joint embedding space, their model is still able to detect them in
images whereas baseline models aren't.
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Figure 7. Pixel-level concept search with increasing abstraction.



They also show that because objects like chair and bench are close in the joint
embedding space, so by looking in the vicinity of chaizr, they hypothesize that they
will find sittable objects.



End.



They show that transformers are not good at zero-shot learning. So, they improve it
by employing a bag-of-words objective and employ a contrastive objective, showing
improvements over simply predictive objective.

They pretrain a large scale model that can perform multiple tasks.
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(2) Create dataset classifier from label text
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In a batch of N (image, text) pairs, they take all possible pairings of images and text (
N?) and train CLIP to predict which out of those possible pairings actually occurred.



They do this by maximizing the agreement (via cosine similarity) of the IV correct
pairs, and, pushing away/reducing agreement between the N? — N negative pairs.
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They train CLIP from scratch on their WebImageText dataset containing ~400
million images.



Image Encoder: Because of the wide variety of architectures and designs available,
they ended up choosing two architectures.

e One is based on ResNet50, with a modifications to the layers and replacing
global average pooling with ‘attention pooling’. They mention

‘transformer-style’ multi head QKV attention, query is
conditioned on the global average-pooled
representation of the image

o The other one is based on the recent Vision Transformer (ViT). They make only
minor changes to this architecture.



o They argue that for the ResNet based encoders, increasing one dimension alone
(either depth, width or resolution) is less beneficial than increasing all
dimensions together (keeping the computing resources same).

Text Encoder: The text encoder is taken as a transformer with some previously
published modifications.
They only scale the width of this encoder as they find that CLIP is less sensitive to
the text encoder.



ResNets: They train 5 models (ResNet50,ResNet101,"Efficient-Net" style
RN50x4,RN50x16,RN50x64)
ViT: They train 3 models (ViT-B/32,ViT-B/16,ViT-L/14)

The largest ResNet model, RN50x64, took 18 days to train

on 592 V100 GPUs while the largest Vision Transformer
took 12 days on 256 V100 GPUs.



They use this pre-trained (on WebImageText dataset) CLIP model and test the
zero-shot transfer ability on other CV datasets like ImageNet, a¥Yahoo and SUN,
showing a significant improvement above Visual N-Grams.

Also, they test it against a fully supervised logistic regression trained on the features
of ResNet50 and beat it on 16 out of 27 datasets. They note that CLIP performs
worse in more specialized datasets like satellite images, lymph node tumors, traffic
sign recognition, etc.

Further, they also compare their zero shot results with few-shot linear probes and
show that they outperform them.
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They talk about natural distribution shift and deep models exceeding accuracy on
ImageNet, while in reality, more robust/better metrics show that that is not the case.
They also use Effective robustness and Relative robustness, which are made to
measure improvements in accuracy under distribution shift, and out-of-distribution
accuracy respectively. They also argue that because a zero-shot model cannot exploit
the patterns of a specific dataset/ distribution, they empirically have more effective
robustness than few shot models.

They showed that the overlap in the datasets was also very low (average 3.2%), and
the maximum improvement in accuracy is only 0.6%, which is in line with other large
scale pre-trained models.

Other than this, they briefly talk about the societal impact and privacy/risk
implications because of CLIP etc.



Problem setting: Zero-shot segmentation

One-line approach: Use the text encoder of models like CLIP, train a separate visual
encoder to produce pixel embeddings close to the label embeeddings in a joint
embedding space.
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Advantage: flexibility, i.e. being able to segment different classes within the same
image given a different label set. (It can also segment with a label that is close to
another label in the embedding space, i.e. given pet as a label, it classifies the dog as

pet)



They use only the text part of CLIP, discarding the image encoder and training their
own image encoder architecture based on Dense Prediction Transformers

(DPT).
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Figure 2: Overview. A text encoder embeds labels into a vector space. An image encoder extracts
per-pixel embeddings from the image and correlates the feature of each pixel to all label embeddings.
The image encoder is trained to maximize the correlation between the text embedding and the image
pixel embedding of the ground-truth class of the pixel. A final spatial regularization block spatially
regularizes and cleans up the predictions.



F'is calculated as the dot product of the image embeddings I and label embeddings
T.
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So, they want to maximize the dot product F; ; ;. for those pixels {i,j} where Yij =k
(GT label). They do this by applying softmax over k on F; ; ;. and taking a
CrossEntropy loss.



For the final step, The softmaxed feature block F' (equivalent to predictions) is then
‘spatially reqgularized’ using a DepthwiseBlock(Depthwise Conv) or a
BottleneckBlock(Depthwise Conv augmented with max-pooling), and is
upsampled to the input image’s resolution using bilinear interpolation.

Training Details: They use pretrained weights on ImageNet for ResNet and ViT
image encoders, and take random initialization for DPT. They freeze the text
encoder(the ViT-B/32 from CLIP) while training.

They show results that are comparable with 1-shot state-of-the-art(HSNet) results,
and significantly higher than previous zero-shot models on PASCAL-51 and COCO-
201. They outperform HSNet on FSS-1000.



They use different text encoders from CLIP and compare them. (The text encoder is
always a simple Transformer, the difference is the image encoder it is co-trained

with in the CLIP pretraining step).

Method | Backbone

Text Encoder (fixed) | embedding dimension | pixAcc [%] | mIoU [%]

LSeg ViT-B/32
LSeg ViT-B/32
LSeg ViT-B/32
LSeg ViT-B/32

VIT-B/32 512 79.70 37.83
VIT-B/16 512 79.77 38.69
RN50 x 4 640 79.85 38.93
RN50 x 16 768 80.26 40.36




Qualitative Analysis



They show that LSe¢g is able to predict objects belonging to unseen classes close to
the points in embedding space.
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They show the same behavior with hierarchical unseen labels (i.e. being able to
predict correctly when a parent category is present in label set instead of the specific
object).



They mention that since LSe¢€ is trained only on positive examples of classes (unlike
CLIP which had a contrastive objective), it can give wrong predictions sometimes.
For example,
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In this image, it predicts the dog as toy (when only toy and €rass are provided)
because a do¢g is probably closer to a toy than €rass visually and semantically.



Extract regions and their text descriptions from images and use language-image
training similar to CLIP on these (contrastively).

Acc. to authors, we cannot directly apply CLIP to regions and have it work well
because there is a major domain shift (?) and thus has unsatisfactory performance.
This is because CLIP is trained to match an image with its image-level description,

and does not know about the alignment between local image regions and text

descriptions of those regions.



1. Fine grained alignment between image regions and text is not usually available,
expensive to annotate.

2. Image-level descriptions might leave out the description of some objects in the
image.

Bootstrap from a pretrained language-vision model (CLIP) and fill in the missing
region descriptions and then align them with proposed regions based on a metric.

" Image-text
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“A bad photo of a bike” | >~ matching
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1. Image-text Pretraining (CLIP) 2. Region-text Pretraining (ours) 3. Transfer learning for detection (ours)
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Figure 2. Method overview. We propose to learn visual representation for image regions via vision-language pretraining. Panel 1: With
contrastive learning, CLIP is able to match images and their descriptions. Panel 2: Initialized by pretrained CLIP, our visual encoder learns
visual region representation from the created region-text pairs. Specifically, as shown in the bottom row, we first create texts by filling the
prompts with object concepts which are parsed from image descriptions, then use pretrained CLIP to align these texts and image regions
proposed by RPN. Panel 3: When human annotation for image regions is available, we transfer our visual encoder for object detection.



They make region descriptions by filling ‘object concepts’(from concept pool) into
prompts and then, using a teacher model V; (from CLIP), and sees which region
(proposed by the Region Proposal Network, RPN, pretrained) aligns with the region
description the most, and assigns it to that.
Once these region-text pairs are generated, the new encoder can be contrastively
trained on these, similar to CLIP’s contrastive language-image pretraining.

They use RoIALlign to extract the region’s visual features from the encoder V, which
pools regional features from the image’s feature map using interpolation.

) takes initial weights from V; for a good start in the visual-semantic space.



The CC3M (contextual captions dataset) was used for training.

The region descriptions are made by filling the concepts from concept pool into
prompts, i.e. kite is filled into the prompt @ photo of a .... tomakethe

descriptiona photo of a kite.These are then passed through the pretrained
language encoder (CLIP) to get the semantic text embedding.

Cosine Similarity is used as the metric of how much the region proposed aligns
with some region description for the contrastive loss between region-text pairs

L cntrst-



They use a distillation loss Lg;s: in addition to a contrastive loss, which is defined as:

1
_ E t .

where, ¢! is a ‘soft target’ = so ftmaz;(distance(v},1;)),
vf is region’s visual features from teacher V;
and, v; is region’s visual features from V

They also added the contrastive loss at image level L¢pirst—img (With negative
samples being labels of different images), like CLIP to their final loss. So, final loss is

L — Lcntrst —|_ Ld’LSt + LC’I’I,t’I"St—'I:mg



They extend this framework to object detection by simply using the RPN to generate

regions and find which one matches the target object class the most, and simple
output that as the localization/bounding box for the object. However, no work is
done in segmenting the target object.

For openvoc object detection, they evaluate the model on 48 base and 17 novel
categories for COCO and 866 base and 337 novel categories from LVIS (general

classes are termed as base and specific object classes are termed as novel).
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Figure 3. Visualization of zero-shot inference on COCO dataset with ground-truth boxes. Without finetuning, the pretrained models (top:

CLIP, bottom: Ours) are directly used to recognize image regions into the categories in COCO. (Image IDs: 9448, 9483, 7386, 4795)



OPEN-SET RECOGNITION: A GOOD
CLOSED-SET CLASSIFIER IS ALL
YOU NEED?
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They show that the closed set accuracy is highly correlated to the open set
performance.
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e Performed multiple experiments using a variety of models: ViT, ResNeft,
EfficientNet, VGG.

e ViT doesn’t overfit its representation to the training classes and outperforms
other methods.

Good closed-set performance => Better OSR



To enhance the closed set performance, they leverage existing techniques from
image recoghnition:

label smoothing
longer training times
better augmentations
better LR schedules



They also try changing the open set scoring rule to Maximum Log€it Score
(MLS).

Using MLS gives better performance in OSR but softmax normalization is better in
combined (OSCR) (because softmax normalization cancels the effect of the feature
norm)



Extract Free Dense Labels from
CLIP
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e Failure: Fine-tuning the image encoder of CLIP for segmentation tasks.

o Performance is good on seen classes but modified DeeplLabv2 in conjunction
with CLIP's text fails to segment novel classes.

e Reasons:

= The visual-language association of CLIP features should remain intact for
best performance.

= Loss of generality => Additional mapper trained on seen classes.
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Comparative Analysis between
MaskCLIP and Our Results
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Ours MaskCLIP (w/o MaskCLIP (w/

Image Ground Truth (PSPNet) PD and KS) PD and KS)




Class loU Acc Prec

aeroplane 90.65 99.87 90.75
bicycle 55.04 94.25 56.95
bird 92.39 94.18 97.98
boat 52.58 94.06 54.38
bottle 56.82 83.66 63.92
bus 90.02 95.26 94.24
car 83.61 93.85 88.46
cat 849 87.19 97.0

chair 174 18.73 71.15
coOw 53.38 64.41 75.72
diningtable 57.32 86.57 62.91



Class loU Acc Prec

dog 79.62 86.45 90.97
horse 59.05 96.59 60.31
motorbike  71.93 86.76 80.8

person 40.78 43.7 85.93
pottedplant 59.96 78.03 72.13
sheep 66.82 84.0 76.56
sofa 50.45 92.7 52.54
train 82.8 94.33 87.13
tvmonitor 64.51 91.8 68.45

Summary:

aAcc mloU mAcc mPrec

77.78 65.5 83.32 76.42






